
www.manaraa.com

www.manaraa.com

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA 93943-6002

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
IMPLEMENTATION OF AN IBM-PC/AT

AS A GPIB CONTROLLER

by

George H. Self, Jr.

December 1986

Thesis Advisor: Prof. J. P. Powers

Approved for public release; distribution is unlimited

T 233653

www.manaraa.com

www.manaraa.com

U nc 1 a s s i f i ed
.ECL'Sity Classification 0? fniS page

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION

Ur.c las s if i eel

lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION /'DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;
Distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUM3ER(S)

oa. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School.

6b OFFICE SYM80L
(If applicable)

62

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School
6c ADDRESS (C/'fy. State, and ZIP Code)

Monterey, California 939^3-5 000

7b. ADDRESS (C/fy. Sfate, and ZIP Code)

Monterey, California 939^3-5 000

8a. NAME OF FUNDING/ SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. AODRESS(C/fy, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (include Security Classification)

IMPLEMENTATION OF AM IBM-PC/AT AS A GPIB CONTROLLER

PERSONAL AUTHOR(S)

S e 1 ^ G ^ O T° cr o

13a TYPE OF REPORT
Master's Thesis

13b TIME COVERED
FROM TO

14 DAIE OF.RFPORT (Year, Month, Day)
19o6 December

15 PAGE COUNT

'6 SUPPLEMENTARY NOTATION

COSATI CODES

f ElD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

GPIB controller, GPIB, data collection system,
instrumentation, computer controlled ins trumentati

"9 ABSTRACT {Continue on
This thesis

standard labora
prompts the use
The user can pe
gram can be mod

Two subrout
and the use of
to collect wave
K.th a plotter
tion for a two

reverse if necessary and identify by block number)
integrates an IBM-PC/AT microcomputer with five pieces of

tory test equipment via a GPIB. A menu-driven program
r to operate the test equipment from the keyboard on the PC.
rform a wide variety of tasks with this program and the pro-
ified to perform other specific tasks desired by the user,
ines were developed to demonstrate the utility of this system
the programming guidelines that were developed. A subroutine
form data from a digital oscilloscope and to plot the waveforn
and u. subroutine to generate a Bode plot of the transfer fun::-

port network were developed.

20 D S'R'BUTiON/ AVAILABILITY OF ABSTRACT

unclassified/unlimited D SAME AS RPT D OTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unc lassified
22a \AME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code)

(408) 646-2679
22c OFFICE SYMBOL

62Po
DD FORM 1473, 84 mar 83 APR edition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

www.manaraa.com

Approved for public release; distribution is unlimited

Implementation of an IBM-PC/AT as a GPIB Controller

by

George H. Self, Jr.

Lieutenant, United States Coast Guard
B.S., U.S. Coast Guard Academy, 1979

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1986

www.manaraa.com

ABSTRACT

This thesis integrates an IBM- PC/AT microcomputer with five pieces

of standard laboratory test equipment via a GPIB . A menu-driven program

prompts the user to operate the test equipment from the keyboard on the

PC. The user can perform a wide variety of tasks with this program and

the program can be modified to perform other specific tasks desired by

the user.

Two subroutines were developed to demonstrate the utility of this

system and the use of the programming guidelines that were developed. A

subroutine to collect waveform data from a digital oscilloscope and to

plot the waveform with a plotter and a subroutine to generate a Bode

plot of the transfer function for a two port network were developed.

www.manaraa.com

TABLE OF CONTENTS

I

.

INTRODUCTION 7

II

.

HARDWARE 9

A. IBM- PC/AT MICROCOMPUTER 9

B. NATIONAL INSTRUMENTS MODEL GPIB-PC2 10

III

.

SOFTWARE 14

A. DOS HANDLER 15

B. INSTALLATION, CONFIGURATION, AND START-UP 15

C . IBCONF 16

D. USE OF IBIC 18

E . PROGRAMMING LANGUAGE INTERFACE 20

F . PLOTTING PACKAGE 24

IV. DEVELOPMENT OF THE SYSTEM CONTROLLER 25

A . DESIGN GUIDELINES 25

B . EARLY EFFORTS WITH BASICA 26

C

.

SELECTION OF FORTRAN 77 26

D. THE DEVELOPED PROGRAM - GPIBX 27

E . PROGRAMMING PROBLEMS ENCOUNTERED 28

V. DEMONSTRATION SUBROUTINES 33

A. BODE PLOT SUBROUTINE 33

B . WAVEFORM RECORDER SUBROUTINE 36

VI

.

PROGRAMMING GUIDELINES 40

A . OUTLINE THE TASK 40

B . MODEL TASK WITH IBIC 40

www.manaraa.com

C . GENERATE CODE 41

D. INTEGRATE NEW CODE INTO GPIBX 42

VII . CONCLUSIONS AND RECOMMENDATIONS 43

A. CONCLUSIONS 43

B . RECOMMENDATIONS 44

APPENDIX A: DECL.FOR PROGRAM LISTING 48

APPENDIX B : GPIBX PROGRAM LISTING 52

LIST OF REFERENCES 77

BIBLIOGRAPHY 78

INITIAL DISTRIBUTION LIST 79

www.manaraa.com

LIST OF FIGURES

2 .

1

National Instruments GPIB-PC2 Circuit Board 11

2 . 2 GPIB-PC2 Functional Block Diagram 12

2 . 3 Block Diagram of Developed System 13

3 .

1

First Menu in IBCONF 17

3 . 2 Second Menu in IBCONF 18

5 .

1

Block Diagram of Bode Plot Test 34

5 .

2

Low-Pass Filter 35

5.3 Bode Plot of the Low-Pass Filter Circuit 35

5.4 Plot of 1 KHz Sine Wave Shown on 0' SCOPE 38

5 . 5 Plot of 1 MHz Square Wave Shown on ' SCOPE 39

7.1 Proposed Student Work Station 46

7.2 Proposed Time Shared System 47

www.manaraa.com

I. INTRODUCTION

This thesis investigated the use of an IBM-PC/AT microcomputer as

a system controller for a set of programmable test equipment. It is the

third in a series of theses that address the subject of using programma-

ble test equipment for simple lab tests. The PC controls the equipment

via a General Purpose Interface Bus (GPIB) . Previous theses written at

the Naval Postgraduate School (NPS) [Refs. 1 and 2] give detailed infor-

mation about the GPIB and the test equipment used.

The HP- 85 microcomputer used in the previous theses was replaced by

the IBM-PC. The HP-85 is programmed to control via its Hewlett Packard

Instrument Bus (HPIB) in BASIC. This limits the use of the HP-85 to

programs developed on it in its particular version of BASIC. The pro-

grams written for the HP-85 are not transportable to different com-

puters. The use of peripheral equipment such as printers and plotters

is also restricted, making the HP-85 less flexible and powerful.

The PC can be programmed in a variety of languages, such as FORTRAN,

PASCAL, and C to control equipment on a GPIB. The PC can also be used

with a variety of peripherals to print, plot, store, manipulate, and

display data. The use of the MS-DOS operating system also gives the PC

a lot more flexibility as programs developed for the PC can be run on

many similar computers that use MS-DOS.

The project undertaken here was to establish control of the various

pieces of test equipment and operate them using an interactive menu-

driven program running on the PC. The scope of control was to enable

www.manaraa.com

the simple electronic engineering laboratory exercises taught at NPS to

be implemented on the system. The user steps through a series of device

menus to operate the test equipment and rarely has to adjust controls on

the test equipment.

www.manaraa.com

II. HARDWARE

This study made use of the following test equipment:

1. TEK PS 5010 Programmable Power Supply

2. TEK DM 5010 Programmable Digital Multimeter

3. TEK DC 5009 Programmable Universal Counter/Timer

4. TEK 5223 Digitizing Oscilloscope

5. WAVETEK MODEL 270 Programmable Function Generator

Detailed information about these five pieces of equipment is avail-

able in Ref. 1 and Ref. 2 as well as the manufacturers' technical

documentation for the equipment.

This equipment was connected to the PC via a National Instruments

IEEE-488 Instrument Interface. This chapter describes the pertinent

hardware issues of the computer and the control board as they relate to

this thesis

.

A. IBM- PC/AT MICROCOMPUTER

In this study a PC was used as the GPIB controller. The large 30

megabyte capacity of the hard disk is needed to support the storage for

a full featured programming language compiler. Without it, compiling a

large program in a high level language degenerates into floppy swapping

and becomes a real burden during the development of a large application

program.

www.manaraa.com

The PC does not have a GPIB connector and the required circuitry as

standard equipment. It does come with several I/O slots that can accept

a number of GPIB interfaces made by such companies as Tektronix, Capital

Equipment Corporation, Hewlett Packard, and National Instruments to name

a few.

B. NATIONAL INSTRUMENTS MODEL GPIB-PC2

A National Instruments Model GPIB-PC2 interface board was used to

provide the hardware and software interface between the PC and the test

equipment on the GPIB. Figure 2.1 is a photograph of this circuit

board. It fits into one of the small slots of the PC and enables the PC

to communicate with devices on the GPIB. Figure 2.2 is a functional

block diagram of this circuit board.

The switches and jumpers on the card are used to configure it to

work in a particular PC environment. The factory default setting of a

base I/O address of 2B8 , DMA Channel 1, and Interrupt Line (IRQ) for a

GPIB TLC (Talker/Listener/Controller) of 7. These can be changed as

needed when other devices already using these settings have been pre-

viously installed in a PC. The GPIB-PC User Manual contains detailed

information on how to change these settings.

This circuit board can support up to sixteen devices on the GPIB and

work in conjunction with another GPIB-PC2 card installed in the same PC

to control another sixteen devices. This gives the PC the capacity to

control up to thirty-two devices without another computer in the system.

Figure 2.3 is a block diagram of how this system was configured.

10

www.manaraa.com

y, ',> V n J? -p, u V, <„ i

..-,.--..-.

Figure 2.1 National Instruments GPIB-PC2 Circuit Board

11

www.manaraa.com

BUFFERING 1N0

OAT* ROUTING

IDOBfS,
OECODING

»ir -Or- W,

Owl
AASITRATlOH

CONFlGUA ATlON
SWITCHES AXO JUM'f'S

>— s, L J- - .,

;

* _— — .jc -J— — KT

D

iB«» »C i C Channel

Gt"6 CO-HECTOR

OATA LINES

MANAGEMENT H«('
HANDSHAKE LINES

Figure 2.2 GPIB-PC2 Functional Block Diagram (From Ref. 3)

12

www.manaraa.com

O'SCOPE SIGNAL
GENERATOR

DIGITAL
MULTIMETER

POWER
SUPPLY

GPIB

PERSONAL COMPUTER

Figure 2.3 Block Diagram of Developed Syster

13

www.manaraa.com

III. SOFTWARE

The circuit board provided by National Instruments (NI) comes with a

software package that provides the DOS handler, language interface,

installation package, and system configuration programs. The following

programs were provided by NI

:

1. GPIB.COM

2. IBSTART.BAT

3. MKCFG.EXE

4. IBSTA.EXE

5. IBSTB.EXE

6. IBDIAG.EXE

7. IBTEST.BAT

8. IBIC.EXE

Additional files are delivered for each language support option

requested. To support programs written in Microsoft -FORTRAN 3.2 the

following files were provided:

1. MFIB.OBJ

2. DECL.FOR

3. DFSAMP.FOR

4. BFSAMP.FOR

This chapter describes how these programs work and how software was

developed to enable the PC to act as a GPIB controller.

14

www.manaraa.com

A. DOS HANDLER

The file called GPIB.COM is loaded when the PC boots up. GPIB.COM

is required to reside on the default boot drive to enable it to be

installed during boot up. The term 'handler' is used by National In-

struments to refer to a loadable device driver. DOS uses the DEVICE=

command in a file called CONFIG.SYS to load the desired device drivers

when the PC first boots up. GPIB.COM contains the software needed to

operate the GPIB-PC2 circuit board as a GPIB I/O device.

B. INSTALLATION, CONFIGURATION, AND START-UP

The file IBSTART.BAT is a DOS BATCH command file that installs the

software provided by NI . It copies the needed files off the floppy disk

from NI and puts them on the desired disk. In this study the default

disk drive is the PC hard disk, C:\, and the NI files were copied to a

sub-directory, C:\GPIB-PC. GPIB.COM and IBC0NF.EXE were then copied to

the default drive C:\ as these files must reside in the default drive to

operate properly. IBSTART.BAT adds the DOS command DEVICE=GPIB . COM to

CONFIG.SYS by using the file MKCFG.EXE. The file IBDIAG.EXE is used to

test the hardware before the associated software is installed.

Once the hardware and handler are installed, the file IBTEST.BAT is

used to test both the hardware and software for proper installation and

operation. This test is done in two parts by running IBSTA.EXE and

IBSTB.EXE. All the tests are menu-driven and take only a few minutes to

execute

.

15

www.manaraa.com

C. IBCONF

The file IBCONF.EXE is very useful even after the system is initial-

ly installed, as it allows devices to be added and deleted from the GPIB

very easily. This routine helps to handle the specific details of

setting up such things as GPIB addresses, system mnemonics, and end of

instruction characters.

IBCONF runs as an interactive menu- driven program that has the user

specify the device characteristics needed by the handler to properly

address and communicate with a device on the GPIB. Figure 3.1 shows the

first menu that is displayed when the program is run. Once a device on

the bus is selected, the second menu (shown in Figure 3.2) is displayed

and the user can change the GPIB attributes of device as required. If a

change is made to a device's attributes in IBCONF, the PC must be

rebooted so that the modified handler can be re-installed by DOS.

16

www.manaraa.com

National Instruments Device Map for Board GPIBO IBM PC-AT

•GPIBO

PS

DMM

-DC5009

•OSCOPE

* Use cursor control keys to select a device or board
* Use function keys below to select desired action
* Use PgUp/PgDn to display maps for other boards

-SIGGEN

•DEV6

DEV7

DEV8

-DEV9

•DEV10

DEV11

DEV12

-DEV13

DEV14

DEV15

•DEV16

Fl: Help F4 : Rename F5 : (Dis)connect F8: Edit F9: Exit

Figure 3.1 First Menu in IBCONF

17

www.manaraa.com

National Instruments Device Characteristics IBM PC -AT

Device: PS Access :GPIB0 SELECT (use right/left arrow keys)

:

Primary GPIB Address 16H
Secondary GPIB Address NONE
Timeout setting TlOs
EOS byte 00H
Terminate Read on EOS no

Set EOI with EOS on Write . . no

Type of compare on EOS 7-bit
Set EOI w/last byte of Write yes

00H to 1EH

Fl: Help F4: Explain Field F6 : Reset Value

Figure 3.2 Second Menu in IBCONF

F9 : Return to Map

D. USE OF IBIC

IBIC is the Interface Bus Interactive Control Program (IBIC). This

program provides keyboard control of the GPIB and connected equipment.

IBIC functions include most IEEE-488 commands, the functions supplied

for specific language interfaces, and some functions specific to IBIC.

The functions allow the user to send a specific command to a device,

to receive data (in the form of character strings) from the devices, and

to display the data received on the PC screen. Data can also be saved

to a file named in DOS path name convention. This allows a user to

generate the correct command sequence to perform a specific task. It

was used extensively in this study as the commands for each device are

peculiar to that specific device. Practice is required for a user to

become familiar with a device's command structure and IBIC is a good

practice tool.

18

www.manaraa.com

When IBIC is running, messages appear on the screen prompting the

user to enter commands, data, or request help as needed. The commands

used most are IBFIND, IBWRT, IBRD.

IBFIND is used to select a device on the GPIB. For example, to

select a digital multimeter with the device mnemonic DMM installed via

IBCONF the user could enter the following at the colon prompt:

: IBFIND DMM

IBWRT is used to send command strings to devices over the GPIB. To

have the multimeter read resistance the following command might be

entered at the DMM: prompt:

DMM: IBWRT "OHMS"

IBRD is used to read data from a device over the GPIB and display it

on the screen. The number of bytes to be read are specified when the

command is used as shown in the following example to read fifty bytes:

DMM: IBRD 50

The previous command results in the following display when the

multimeter is measuring the resistance of an open circuit:

[2900] (end rqs cmpl)

count: 9

31 2E 45 25 39 39 3B 0D l.E+99;*
0A *

DMM:

The first line of the above message is the status word IBSTA that

describes the status of the GPIB in two forms: a hexadecimal value

followed by a mnemonics list. The second line contains the actual

number of bytes received from the device over the GPIB, in this case 9.

19

www.manaraa.com

The next two lines contain the received characters and their ASCII

codes. In this example l.E+99 represents the infinite impedance of an

open circuit. The two asterisks represent the two small diamond

characters that actually appear on the display. These represent the

carriage return and line feed indicated by the ASCII codes OD and OA in

the third line of the display. The fourth line is the prompt, DMM: , for

the next command.

More specific information and additional examples are contained in

Reference 3 Section 5

.

E. PROGRAMMING LANGUAGE INTERFACE

MFIB.OBJ is the Microsoft FORTRAN 3.2 language interface that en-

ables that particular version of a FORTRAN application program to use

subroutine calls that make use of the handler supplied by NI . Programs

compiled with MS -FORTRAN 3.2 are linked with MFIB.OBJ to produce an

executable file. MFIB.OBJ must not be the first file named in the link

list when linking the application program.

Similar to IBIC, the most commonly used subroutines and functions

are IBFIND, IBWRT, and IBRDF.

IBFIND is a function used to find the address of a device that has

been installed on the GPIB via IBCONF. The integer returned is assigned

to a variable that must be used in all references to that device in GPIB

subroutine and function calls . The following is an example of how to

use IBFIND in a FORTRAN program to assign the address of the multimeter

to the integer variable DMM:

DMM = IBFIND ('DMM '

)

20

www.manaraa.com

(The software provided by NI requires the last character in a string be

a blank to indicate the end of a string.)

IBWRT writes data to a GPIB device. It has three parameters: the

device address, the data to be sent contained in an integer vector, and

the number of bytes to be sent. The following is an example to command

a digital multimeter to read resistance from a FORTRAN program:

WRT(l) = ICHAR('O') + ICHAR('H')*256
WRT(2) = ICHAR('M') + ICHAR('

S
'
)*256

CALL IBWRT (DMM,WRT,4)

NI requires character strings to be entered as shown to be compati-

ble with the handler GPIB.COM. Characters are represented in FORTRAN

programs run on the PC in memory as two bytes in low order byte then

high order byte convention. The first two lines above squeeze two

characters into one sixteen bit word and convert the characters to high

order byte then low order byte convention. This word is transmitted

over the GPIB as two sequential eight bit bytes that contain the charac-

ter codes in the correct order to be used by devices on the GPIB.

Writing code in this way for every command string is very tedious.

The subroutine STRING, shown in the following FORTRAN program listing,

was written to put character strings into the integer array format

required to be used with IBWRT. An explanation of this subroutine

follows

:

SUBROUTINE STRING (INPUT , LENGTH ,WRT)

C***** THIS CONVERTS CHARACTER STRINGS INTO REQUIRED FORM FOR IBWRT **

CHARACTERS INPUT (30)

INTEGER LENGTH,I,J,K,WRT(512)
J= 1

DO 10 1=1, LENGTH,

2

K= 1+1

WRT(J)= ICHAR(INPUT(I)) + (ICHAR(INPUT (K))*256)

21

www.manaraa.com

J= J+l

10 CONTINUE
RETURN
END

The code

:

SUBROUTINE STRING (INPUT , LENGTH ,WRT)

CHARACTER* 1 INPUT (30)

INTEGER LENGTH,I,J,K,WRT(512)
J= 1

establishes the subroutine STRING with the formal parameters: INPUT,

LENGTH, and WRT. INPUT is the character string to be modified and

LENGTH is the number of characters in the STRING. WRT is the integer

array returned by STRING to be used with IBWRT. I, J, and K are the

indices of the arrays INPUT and WRT.

The code

:

DO 10 1=1, LENGTH,

2

K= 1+1
WRT(J)= ICHAR(INPUT(I)) + (1CHAR(INPUT (K))*256)

J= J+l
10 CONTINUE

takes the elements of INPUT in pairs and performs the operation needed

to generate the elements of WRT.

IBRDF reads data to a file. It has two parameters: the device name

and the filename under which the data is stored. An example of how to

read a resistance value from the multimeter at address DMM and store it

in a file called DATA on the A: disk in a FORTRAN program follows:

CALL IBRDF (DMM, 'A: DATA ')

The DECL.FOR is a file of FORTRAN variable declarations recommended

for use by NI and is included as Appendix A. The three global variables

22

www.manaraa.com

IBSTA, IBERR, and IBCNT must be used in all FORTRAN programs to enable

the GPIB status, any detected bus errors, and the number of bytes trans-

mitted during a message to be available from the handler. These

variables are updated after each subroutine call to reflect the status

of the most recently referenced device and the status of the GPIB.

IBSTA is the status word returned by all functions. This contains

information about the GPIB status. It can be used to check for proper

bus operation and bus status such as I/O complete or a device requests

service

.

IBERR is the error variable containing the error code when an error

is detected. The error codes indicate such problems DOS errors, invalid

arguments to function calls, or file system errors.

The IBCNT variable is updated after each read or write is executed.

It contains the number of bytes transferred during the last read or

write

.

The program listing in Appendix B was generated making use of these

variables and functions. There are many more functions and variables

available. A user can also write new functions and specify new vari-

ables if needed.

The two files DFSAMP . FOR and BFSAMP . FOR are example programs provide

by NI that show how to write application programs that make use of the

subroutines provided in MFIB.OBJ.

23

www.manaraa.com

F. PLOTTING PACKAGE

The plotting package SlideWrite Plus produced by Advanced Graphics

Software was used for all waveform and data plots in this study. It is

one of the many plotting packages available for use with the PC.

24

www.manaraa.com

IV. DEVELOPMENT OF THE SYSTEM CONTROLLER

The goal of this study was to develop a system for use in student

laboratory environment as a teaching aid. Students at NPS could run

programs on a computer connected to various pieces of lab test equip-

ment. The student would perform circuit tests and demonstrations of

class room theory through menus displayed on the computer monitor.

Students would set up and control instruments by typing in responses on

the computer keyboard. Previously written and stored programs could put

waveforms on the monitor or the digitized oscilloscope, check data

values at test points for correct values, and record and store data

automatically for later use. Off-the-shelf software would be used for

analyzing and plotting the recorded data.

With these goals in mind a set of design guidelines were developed.

This chapter describes these guidelines and details the software that

was developed.

A. DESIGN GUIDELINES

Design of this system was undertaken as a top-down, structured

programming implementation. A top-down structure was chosen early in

the study. This enabled a gradual system development starting with the

most essential program features first and then progressing to more

complicated functions. To this end, step-wise refinement was used

extensively

.

The concept of modular programming was followed. All new functions

were added as subroutines that would not affect the code previously

25

www.manaraa.com

written and tested. These new functions were kept simple so as to be

short. This limited the size of a program module that had to be writ-

ten, tested, and debugged to a manageable size.

All control of the test equipment was to be via the computer key-

board. The student would not have to adjust the equipment by hand.

Menus on the computer monitor would give instructions to the student as

required.

B. EARLY EFFORTS WITH BASICA

National Instruments provides a handler package to be used with

BASICA. (BASICA is an enhanced BASIC written for the IBM/PC by Micro-

soft.) Early in this study, this handler was used with some simple test

programs written in BASICA. These programs were found to be very slow

during run time since BASICA is an interpretative language. In addition

these BASICA programs were not transportable to all IBM/PC compatible

computers. Due to these limitations another programming language was

selected.

C. SELECTION OF FORTRAN 77

A language having separate compilation was desired to facilitate the

modular programming style desired. It was anticipated that the analysis

on data collected by the system could be handled most advantageously by

using the some of the many subroutines already developed and available

in FORTRAN libraries. A FORTRAN 77 subset compiler suitable for use on

an IBM/PC was available in the lab for use and was selected as the

system development language. This was Microsoft -FORTRAN 3.2.

26

www.manaraa.com

D. THE DEVELOPED PROGRAM - GPIBX

The final program developed, GPIBX, is included as Appendix B. Once

compiled as an executable file it requires around 100K bytes of RAM.

Execution of most commands appears to be immediate to the user. The

demonstration subroutines entail some delay due to the number of opera-

tions being performed sequentially and the disk I/O for storage being

performed.

The program presents the user with a series of menus that enable the

user to remotely operate most of the front panel controls available on

the different pieces of test equipment. After a piece of equipment is

selected, a new menu specific to that piece of equipment is presented.

The user can then select a particular operation to perform or setting to

adjust. Specific values for voltages or frequencies can be entered via

the PC keyboard. Numbers can be entered in scientific notation to save

time

.

The program only accepts certain responses depending on the menu

selections available. It prompts the user to try again when invalid

responses are entered. Settings outside the range of the equipment are

ignored.

Control of the different pieces of equipment is accomplished one

level at a time. First, the device is selected from a main menu. Then

the user selects a particular feature of the device to adjust or oper-

ate. The menus presented to the user proceed in one level of control

each time. The user can back-up one level of control at any time. To

switch devices a user must back out to the main menu level and then

select another device. This prevents a user from jumping around the

27

www.manaraa.com

menus and inadvertently adjusting the wrong piece of equipment. A

single point of return for each subroutine enforces this run time

operation.

E. PROGRAMMING PROBLEMS ENCOUNTERED

MS-FORTRAN 3.2 was not the best language to use for development of

this system. The bulk of the programming required character string

manipulations. A full featured ANSI FORTRAN 77 compiler may have been

satisfactory but MS-FORTRAN 3.2 is a subset and does not have some of

the FORTRAN 77 character string handling features that were needed.

The first programming problem found was the lack of substring sup-

port. Device commands are typically a string of characters specifying

an operation and a data value to use. Building these strings could be

handled in FORTRAN 77 by concatenating substrings. Since neither sub-

strings nor string concatenation is available in MS-FORTRAN 3.2, blocks

of code had to be written for each operation similar to the following

listing of a subroutine in GPIBX. An explanation follows:

SUBROUTINE FREQ
C***** THIS MAKES THE SIGGEN OUTPUT A SPECIFIED FREQUENCY *****

INTEGER DVM,I,WRT(512)
CHARACTERS FREQ (13), INPUT (11)

C

FREQ(1)= 'F'

FREQ(13)= 'I'

C

DVM= IBFIND ('SIGGEN ')

WRITE (*,10)
10 FORMAT (' ', 9X ,' ENTER DESIRED FREQUENCY AS XX.XEX (. 01Hz- 12MHz)

'

)

C

READ (*,20) INPUT
20 FORMAT (llAl)
C

DO 30 1= 1,11
FREQ(I+1)= INPUT(I)

30 CONTINUE

28

www.manaraa.com

CALL STRING (FREQ , 13 , WRT)
CALL IBWRT (DVM,WRT,13)
RETURN
END

The code:

SUBROUTINE FREQ
INTEGER DVM,I,WRT(512)
CHARACTER* 1 FREQ (13), INPUT (11)

establishes the subroutine FREQ and declares the variables used in the

subroutine. DVM (DeVice Mnemonic) is a variable used to contain the

integer representation of a device address on the GPIB . I is a variable

used for the index of the arrays declared. WRT is the integer array-

containing the command string to be sent over the GPIB by the subroutine

IBWRT. It has 512 as its upper dimension limit to enable it to accept

as large a string as needed.

The code

:

FREQ(l)- 'F'

FREQ(13)= 'I'

puts a 'F' in the first element of FREQ and an '

I
' in the last element

of FREQ. The WAVETEK MODEL 270 Programmable Function Generator has a

command string format for selecting frequencies that require the first

character to be a 'F' followed by characters that specify the desired

frequency, such as '100000' or ' 1E5 ' for 100 KHz. If the last character

in the string is an 'I' then the command is executed immediately.

The code:

DVM= IBFIND('SIGGEN ')

uses the function IBFIND to place the integer representation of the

address of the device SIGGEN (signal generator) in the variable DVM.

29

www.manaraa.com

The code:

WRITE (*,10)
10 FORMAT (' ', 9X ,' ENTER DESIRED FREQUENCY AS XX.XEX (. 01Hz - 12MHz)

'

)

READ (*,20) INPUT

20 FORMAT (11A1)

generates an on-screen menu that requests the user to enter a frequency

via the keyboard.

The code

:

DO 30 1= 1,11
FREQ(I+1)= INPUT(I)

30 CONTINUE

builds command strings using previously stored characters and those

entered by the user.

The code:

CALL STRING (FREQ , 13 , WRT)

CALL IBWRT (DVM,WRT,13)
RETURN
END

uses the subroutine STRING to put the command string FREQ in the form

required for use with the subroutine IBWRT. IBWRT sends the integer

array WRT that represents the command string in FREQ to the device

identified by the variable DVM. The 13 is the number of bytes to be

transferred and is required for both STRING and IBWRT.

The subroutine IBWRT has three parameters. It requires the GPIB

address of where the message is going, the integer vector to be passed,

and the number of characters represented in the integer vector being

passed. MS-FORTRAN 3.2 does not have an intrinsic function to return

the length of a string. The programmer must keep track of the length of

strings being passed. In some cases the length of a string depends on

run- time input from the user. To cover all the possible cases the

30

www.manaraa.com

character string variables used to input command strings are larger than

always needed. This adversely affects both memory requirements and run-

time efficiencies.

The most difficult problem encountered was reading data returned

from a device. The subroutine IBRDF reads data from a device into a

file. If the file did not previously exist, a new one is created. Once

the data has been copied into the file, IBRDF closes the file.

The book, Structured FORTRAN 77 For Engineers And Scientists (Ref.

4), was heavily relied on as a FORTRAN 77 reference. It does not list

binary files as one of the file types supported. After many unsuc-

cessful attempts of reading the data from one of these files a call was

made to the Microsoft Users Hotline. A Microsoft representative recom-

mended opening the file as a BINARY type of file explaining that MS-

FORTRAN 3.2 does support binary files. The following is an example of

FORTRAN code that was used to successfully open files for use in the

system controller program:

OPEN (1 , FILE= ' A : DATA
'

, STATUS= ' OLD ' , FORM= ' BINARY
'

)

These BINARY files contained numeric data that could not be read

with formatted read statements . Characters have to be read out one at a

time into arrays before the data is available for numeric processing.

Some data files can have over 5,000 characters and take a lot of time to

be read into arrays

.

The data format used by specific devices can cause problems as well.

The waveform data from the TEK 5223 Oscilloscope comes over the GPIB as

a string of numbers separated by commas. The numbers are one, two, or

31

www.manaraa.com

three digits long and can have a minus sign in front. It is not possi-

ble to read this string of characters with a formatted read statement to

pull out the separate data values. A great deal of code was written

just to get this data in a usable form.

32

www.manaraa.com

V. DEMONSTRATION SUBROUTINES

Once the basic objectives of this study were met, further work was

done to investigate the issues involved with developing software modules

to perform a sequence of the basic operations already developed. To

this end a subroutine to generate a BODE plot of a two port network and

a subroutine to plot the waveforms shown on the digitizing oscilloscope

were written. This chapter discusses these two subroutines and high-

lights some of the problems encountered.

A. BODE PLOT SUBROUTINE

The BODE plot subroutine is selected in the SIGNAL GENERATOR MENU.

This subroutine generates and records the data necessary to make a plot

of input frequency vs. gain magnitude for a two port network. The user

can select the starting and stopping frequencies to be swept while data

is being recorded. The user also selects the number of points to be

taken, up to 400. More points could be taken but the plotting software,

SlideWrite Plus, can plot a maximum of only 400 total data points on a

graph. This corresponds to one line of 400 points or two lines of 200,

etc

.

The rms voltage of the output and the corresponding input frequency

are recorded for each frequency generated. Figure 5.1 is block diagram

of how the system is configured to conduct this test. The magnitude of

the transfer gain is calculated as 20*log(V t/V- rms) an^ recorded in

a file with the corresponding input frequency. This data is then plot-

ted with the SlideWrite Plus plotting package. The circuit shown in

33

www.manaraa.com

Figure 5.2 was examined with this subroutine and the corresponding Bode

Plot is shown in Figure 5.3. The input signal is assumed constant over

all frequencies of the sweep.

TWO
PORT

NETWORK

LOW

3GNAL
GENERATOR

UGH

DIGITAL
MULTIMETER

GPIB
4V

--—
1

s

— J

[fi— hQ-^oq

PERSONAL COMPUTER

Figure 5.1 Block Diagram of Bode Plot Test

The Bode Plot shown in Figure 5.3 appears to represent the response

of a Low-Pass Filter. The circuit is made up of passive elements so the

gain is always zero DB or less. The circuit gain decreases as the input

frequency increases. There appears to be a resonant frequency up at

around 1 MHz. This is probably due to some stray reactances present in

the circuit components that have little effect at the lower frequencies.

34

www.manaraa.com

10K OHMS

.047 MCBOFARAOS

Figure 5.2 Low-Pass Filter

CD

Q
Z
<
(J

-10

-20

-30

-40

-50

-60

-70

i i i i i i i i i i i i i

V.

-nn 1 1 1 1 i 1 1 1

1E2 1E3 1E4 1E5

FREQUENCY (HZ)

1E6 1E7

Figure 5.3 Bode Plot of the Low-Pass Filter Circuit

35

www.manaraa.com

Caution must be used when using this Bode Plot subroutine as some

circuits tested were observed to load the signal generator at various

frequencies and cause the input voltage to fall off. The change in

input voltage may be very slight and not visible on the oscilloscope.

The input voltage should always be checked with a voltmeter to be sure

it remains constant. This problem could be corrected by using two

voltmeters connected to the GPIB or by using a multiplexer to enable one

voltmeter to take two different readings at the same frequency.

B. WAVEFORM RECORDER SUBROUTINE

The waveform recording routine is selected in the OSCILLOSCOPE MENU.

The oscilloscope samples the input signal on either input channel and

digitizes the amplitude. The number of sample data points generated

depends on the sweep rate selected and the number of channels being

displayed. For one dual trace amplifier in use and a sweep rate of not

less than .1 msec/div, 512 points are taken representing a period of

time equal to ten time divisions (one full oscilloscope screen) . For

sweep rates less than .1 msec/div, 1024 points are taken. The increase

in the number of points is to avoid aliasing by under- sampling.

The plotting software, SlideWrite Plus, can plot a maximum of 400

points. The waveform recording subroutine selects 400 out of 512 or 341

out of 1024 points for plotting. The 400 out of 512 are selected by

taking the first four of every five points up to 500 points and ignoring

the last twelve points. The 341 points are selected by taking the first

of every three data points up to 1024 points. Either number of points

36

www.manaraa.com

do a fine job of representing a five inch wide oscilloscope trace with a

few cycles of a waveform displayed.

No scaling information is available from the oscilloscope via the

GPIB. The user must enter the volts/div and time/div to allow the

subroutine to properly scale the data. The numbers from the oscilloscope

represent only the voltage amplitude information. Each vertical scale

division is 100 units, so a value of 250 represents 2.5 divisions above

the y-axis and a value of -320 represents 3.2 division below the y-axis.

The waveform recorder subroutine uses the volts/div to scale the numbers

transferred from the oscilloscope into volts.

This subroutine also calculates the time scaling information by

using the time/div entered by the user and the user's response to ques-

tions about how many waveforms are being displayed. Both pieces of

information dictate how many data points are sampled by the oscilloscope

during one display trace.

More expensive oscilloscopes have the scaling information available

over the GPIB.

Figure 5.4 shows a plot of a 1 KHz sine wave output by the WAVETEK

MODEL 270 into Channel 1 of the TEK Oscilloscope. The signal has a peak

amplitude of five volts. The volt/div is set on five volts/div and the

time/div is set on .2 msec/div. This waveform is represented by 512

points sent from the oscilloscope and has been plotted with 400 points.

The plot is a very smooth sine wave.

Figure 5.5 is a plot of the waveform shown on the oscilloscope when

a 1 MHz square wave is output from the signal generator into Channel 1

of the oscilloscope. The volts/div is set on two volts/div and the

37

www.manaraa.com

time/div is set on 0.5 microseconds/div. The plot is a very accurate

representation of the waveform shown on the oscilloscope. The slight

distortion of this high frequency signal is clearly visible in the plot.

if)

\-
_l

O
>

20

15

10

-5

-10

-15

-20

-

:

:

: \
\ /

-

:

:

1
I
1
1

—1— J_ ' -.1111 1111 . -1 1
L..-L- 1111 I 1 1

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

(E-2)

TIME (SEC)

Figure 5.4 Plot of 1 KHz Sine Wave Shown on 0' Scope

www.manaraa.com

en
\-

_j

O
>

<£U
-

15
-

10

5
/v J\ l\ (V ^

I

I

f
i

f

\

1

-5
-

I I ! 1 1V V 1/ i/

-10

-15

-70 .J—1—1— J

—

1 I 1 1 i i i i i .l i i LI 1 L._ J— J— i l ,

.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

E-51

TIME (SEC)

Figure 5.5 Plot of 1 MHz Square Wave Shown on 0' Scope

39

www.manaraa.com

VI. PROGRAMMING GUIDELINES

While developing this system certain steps of the development were

repeated. A set of steps evolved to be performed every time a new

function was implemented in software. This chapter outlines these steps

and details items to watch for when developing modules to use in the

system.

A. OUTLINE THE TASK

The task to be performed was outlined on paper. This included

drawing a schematic diagram clearly showing test points. Each test point

was labeled to indicate the test equipment connections . The connections

of the test equipment to be used, such as Channel A, Ground, High, and

Guard were indicated. Labels for these points were assigned variable

names in the system development language. These four connection points

were labeled in FORTRAN 77 as CHANA, GRND , HIGH, and GUARD.

Sketching a block diagram of the process to be performed is very

helpful. This can be done using standard flow charting techniques. A

block diagram of the process helps to show how control in the program

flows and where data flows during execution.

B. MODEL TASK WITH IBIC

The program IBIC was run to develop the command strings necessary to

perform the task outlined. These command strings are unique for each

piece of equipment and are detailed in each equipment's technical

40

www.manaraa.com

reference manual. Using IBIC allows for interactively entering command

strings, executing them, and observing the results.

C. GENERATE CODE

Once the necessary command strings have been generated, program code

in the programming language of choice can be written. This study used

Microsoft FORTRAN 3.2, a subset of ANSI FORTRAN 77. Many of the issues

discussed apply to other languages as well.

Globally scoped variables were avoided. The handler from NI uses

three global variables: IBSTA (status word), IBERR (GPIB error code),

and IBCNT (the number of bytes sent). These should be the only globally

scoped variables used. Using only locally scoped variables avoids the

problems of side-effects and indiscriminate access that global variables

are subject to. This speeds program development time, improves program

readability, and facilitates software maintenance.

Program modules were developed separately from the existing system

program. This kept the amount of text to review with the editor being

used to a minimum. For this study Wordstar was used as the text editor

and allowed the user to view twenty- five lines of programming code in

one screen. The program modules under development were written as

subroutines. This ensured the proper identification of formal parame-

ters required to be passed back and forth when the module was integrated

into the existing system program.

Previously developed subroutines were used when applicable. The

editor can then copy blocks of text into files. The MS-FORTRAN Metacom-

mand $INCLUDE can be used to include other files for compilation with

41

www.manaraa.com

the one under development. This helps to keep the size of the file

being edited to a minimum.

Once the module is written and compiled, it should be tested exten-

sively. By using the windowing environment of DESQview the system

program GPIBX, IBIC, and the developed module were run in parallel.

This facilitated testing the module as it allows observing the real time

interaction of the module with the system program without actually

changing the system program. The two programs are still separate and

cannot change the operation of either' s code.

D. INTEGRATE NEW CODE INTO GPIBX

When the new module performs correctly, it can be implemented in the

system program, GPIBX. FOR. The editor moves the necessary block of code

from the developed module file into the GPIBX. FOR file. The necessary

modifications were made such as the text of menus, additional function

options, the addition of subroutine calls and returns, and the addition

of comment lines to document the new subroutines.

All subroutines developed in this study have a single point of

return. This gives up some flexibility in programming but helps program

readability. This is why menu selection proceeds in one level at a time

and out one level at a time.

42

www.manaraa.com

VII. CONCLUSIONS AND RECOMMENDATIONS

This thesis took a close look at the GPIB interface circuitry and

software made by National Instruments to enable an IBM- PC to be a GPIB

system controller. Software was developed to implement interactive

control of the test equipment from the computer keyboard. A subroutine

to enable waveform data acquisition from the TEK 5223 Digitizing Oscil-

loscope and to plot the data using software provided by Advanced Graph-

ics Software Inc. on a HP740A plotter was developed. Another subroutine

to generate a Bode Plot for a two-port system was developed.

A. CONCLUSIONS

The basic electronic laboratory equipment used at NPS are manual

versions of the test equipment used in this study. This study has shown

how an interactive program could be developed to allow automation of

several of the processes involved in executing basic laboratory exer-

cises such as data acquisition, waveform plotting, and Bode Plots. The

results obtained point out several concluding points:

1. Selection of a system development language is key. MS -FORTRAN 3.2
doesn't support enough of the FORTRAN 77 extensions to make de-

velopment as straight -forward as possible. The bulk of pro-
gramming involves string manipulations. A language such as C is

probably better suited to this application.

2. Selection of an IBM-PC based computer enabled use of several
different software packages for the IBM-PC and its compatibles.
Editing the software was performed with WORDSTAR by MICROPRO.
Operating the computer as a development system was done with
DESQVIEW by QUARTERDECK. Plotting of data was done with
SLIDEWRITE PLUS by ADVANCED GRAPHICS SOFTWARE. Using a widely
supported computer such as the PC makes an extensive amount of
software available giving any system development undertaken a lot
of tools to use.

43

www.manaraa.com

3. Use of a window based operating system such as Desqview allowed

for several different IBIC sessions to be run at what appears to

be the same time to the user; they actually run one at a time.

This allowed for quick investigation of the necessary command

strings to have a specific task performed by a particular piece of

test equipment. Several pieces of equipment can be operated at

the same time this way. The developed program, GPIBX, can also be

run and the interaction of the GPIBX and the test equipment can be

observed. A windows environment greatly speeds system

development

.

4. Great care must be used when selecting software packages to be

used with the system. A plotting/graphics package written by

Enertronics was first tried to handle the plotting requirements.

This software was not able to generate logarithmic plots as adver-

tised. It also did not plot as many data points per line as

stated in the manual. These deficiencies led to the use of

SlideWrite Plus for plotting.

5. Similar caution must be used when selecting GPIB devices as well.

The TEK oscilloscope sends back graphic data as a string of ASCII
characters. It requires a lot of program code to put these char-
acters in a form usable in FORTRAN to express numeric data.

6. Developing a program that is menu driven and allows the user to

specify a series of operations, tests , and measurements for the

GPIB controller to perform is beyond the scope of what a student
can do as a thesis assignment. Such a system is technically
feasible. NI recently began marketing just such a

software/hardware package called Labview. It is written for an
Apple Macintosh computer and may not have the I/O flexibility
needed to make use of the different peripherals required for a

specific development.

7. The GPIB connector is made to allow stacking several connectors at
the same connection point. As a result, the cable feeds in at a

right angle to the connector. On the IBM- PC the arrangement of the
connector in the back of the computer is such that the cable binds
up against the computer housing. A GPIB socket extender would
eliminate this annoying problem.

B. RECOMMENDATIONS

Further thesis work should be done evaluating some of the new soft-

ware packages available at this time or this system could be developed

into a fully interactive lab teaching aid for the elementary labs taught

at NPS. As work progressed more sophisticated labs could be automated.

44

www.manaraa.com

The development language should be changed to one having good char-

acter string handling primitives. Selection of a language should be

based on an evaluation of the documentation available, portability of

compiled programs to run on different but compatible computers, run time

speed of compiled programs, and the programming experience of the

programmer

.

The local operation of devices on the GPIB should always be avail-

able to allow students the opportunity to investigate their circuits

outside the control of the computer program. Too much automation would

be detrimental to a student's understanding of how an instrument works

and what its capabilities and limits are. Observation of the operation

of test equipment provides a lot of real world experience in applying

concepts developed in different classes.

A proposed student work station that could be used in an automated

lab environment is shown in Figure 7.1. The block diagram shown in

Figure 7.2 shows how these work stations could be connected to a single

computer, printer, and plotter. The cost of personal computers used for

this application may be low enough to have a dedicated personal computer

for each work station. Having a computer at each work station would

prevent a single computer failure from stopping the work of all

students

.

45

www.manaraa.com

CIRCUIT
UNDER
TEST

MULTIPLEXER

L TTJ
O'SCOPE 3(2n|AL

CEN€RATQR
COUNTER
TIMER

LA
DOTAL

UJLTN«eTg*

I

POWER
SUPPLY

GPIB

I
1

i
J

-•

p

U_=

//.'' .''"^X
1

'

PERSONAL COMPUTER

Figure 7.1 Proposed Student Work Station

46

www.manaraa.com

STUDENT
WORK
STATION

STUDENT
WORK
STATION

STUDENT
WORK
STATION

miiiMiiiiiiiiimiiiii

11111:1111

TIME SHARE
COMPUTER

STUDENT
WORK
STATION

X/Y
PLOTTER

PRINTER

Figure 7.2 Proposed Time Share System

47

www.manaraa.com

APPENDIX A

DECL.FOR LISTING

This is a listing of the Fortran variable declarations recommended
for use and provided by National Instruments . This listing was provided
by National Instruments with the exception of the list of variables
appearing as all capital letters.

c Microsoft FORTRAN Declarations

$storage :

2

c You must include the following common declarations
c in your program.
c

c status variables declared common by the language interface
c ibsta - status word
c iberr - GPIB error code
c ibcnt - number of bytes sent

common /ibglob/ ibsta, iberr, ibcnt

c Optionally include the following declarations in your
c program.
c

c GPIB Commands and meanings
c UNL - GPIB unlisten command
c UNT - GPIB untalk command
c GTL - GPIB go to local
c SDC - GPIB selected dev clear
c PPC - GPIB ppoll configure
c GET - GPIB group execute trig'r
c TCT - GPIB take control
c LLO - GPIB local lock out
c DCL - GPIB device clear
c PPU - GPIB ppoll unconfigure
c SPE - GPIB serial poll enable
c SPD - GPIB serial poll disable
c PPE - GPIB ppoll enable
c PPD - GPIB ppoll disable

integer UNL, UNT, GTL, SDC, PPC, GET, TCT
integer LLO, DCL, PPU, SPE, SPD, PPE, PPD

c GPIB status bit vector :

c global variable ibsta and wait mask
c ERR (hex 8000) - Error detected
c TIMO (hex 4000) - Timeout
c END (hex 2000) - EOI or eos detected

SRQI (hex 1000) - SRQ detected by CIC

48

c

www.manaraa.com

c LOK (hex 80)

c REM (hex 40)

c CIC (hex 20)

c ATN (hex 10)

c TACS (hex 8)

c LACS (hex 4)

c DTAS (hex 2)

c DCAS (hex 1)

RQS (hex 800) - Device needs service
CMPL (hex 100) - I/O completed

Local lockout state
Remote state
Controller- in-charge
Attention asserted
Talker active
Listener active
Device trigger state
Device clear state

integer ERR, TIMO, END, SRQI , RQS, CMPL, LOK
integer REM, CIC, ATN, TACS, LACS, DTAS, DCAS

c Error messages returned in common variable iberr
c EDVR = DOS error
c ECIC = 1 Function requires board to be CIC
c ENOL = 2 Write function detected no Listeners
c EADR = 3 Interface board not addressed correctly
c EARG = 4 Invalid argument to function call
c ESAC = 5 Function requires board to be SAC
c EABO = 6 I/O operation aborted
c ENEB = 7 Non-existent interface board
c EOIP = 10 I/O operation started before previous operation completed
c ECAP = 11 No capability for operation
c EFSO = 12 File system operation error
c EBUS » 14 Command error during device call
c ESTB = 15 Serial Poll status byte lost
c ESRQ = 16 SRQ remains asserted

integer EDVR , ECIC , ENOL , EADR , EARG , ESAC , EABO
integer ENEB , EOIP , ECAP , EFSO , EBUS , ESTB , ESRQ

c EOS mode bits
c BIN (hex 1000) - Eight bit compare
c XEOS (hex 800) - Send EOI with eos byte
c REOS (hex 400) - Terminate read on eos

integer BIN, XEOS, REOS

c Timeout values and meanings
c TNONE = Infinite timeout (disabled)
c TlOus = 1 Timeout of 10 us (ideal)
c T30us = 2 Timeout of 30 us (ideal)
c TlOOus = 3 Timeout of 100 us (ideal)
c T300us = 4 Timeout of 300 us (ideal)
c Tims = 5 Timeout of 1 ms (ideal)
c T3ms = 6 Timeout of 3 ms (ideal)
c TlOms = 7 Timeout of 10 ms (ideal)
c T30ms = 8 Timeout of 30 ms (ideal)
c TlOOms = 9 Timeout of 100 ms (ideal)

49

www.manaraa.com

c T300ms = 10 Timeout of 300 ms (ideal)

c Tls - 11 Timeout of 1 s (ideal)

c T3s = 12 Timeout of 3 s (ideal)

c TlOs = 13 Timeout of 10 s (ideal)

c T30s = 14 Timeout of 30 s (ideal)

c TlOOs = 15 Timeout of 100 s (ideal)

c T300s = 16 Timeout of 300 s (ideal)

c TlOOOs = 17 Timeout of 1000 s (maximum)

integer TNONE , TlOus , T30us , TlOOus , T300us

integer Tims , T3ms , TlOms , T30ms , TlOOms

integer T300ms ,Tls ,T3s ,T10s ,T30s

integer TlOOs ,T300s ,T1000s

c Miscellaneous

c cmd
c rd
c wrt
c bname
c bdname
c flname
c bd
c dvm
c V

c cnt
c mask -

c spr
c ppr

c S - specifies sense of PPR

c LF - ASCII line feed character

integer S , LF

c Variables passed in to GPIB function examples
- command buffer
- read data buffer
- write data buffer

bname - board name buffer
- board or device name buffer
- file name buffer
- board or device number
- device number
- "value" parameter
- byte count for transfers
events to be waited for

- serial poll response byte
- parallel poll response byte

integer cmd(10) , rd(512) , wrt(512)
character*8 bname, bdname
character*50 flname
integer bd, dvm, v, cnt , mask
integer spr, ppr

C***** THESE DECLARATIONS ARE NEEDED TO RUN GPIBX *****

C ---SOME DECLARATIONS...
C SELECTION: OPTION SELECTED BY USER
C ERR0R2 SELECTION: ERROR MESSAGE FOR INCORRECT SELECTION BY USER
C PS: POWER SUPPLY SUBROUTINE
C DMM: DIGITAL MULTIMETER SUBROUTINE
C COUNTER: COUNTER/TIMER SUBROUTINE
C SIGGEN: SIGNAL GENERATOR SUBROUTINE
C OSCOPE: OCCILISCOPE SUBROUTINE
C

CHARACTER*! SELECTION

50

www.manaraa.com

CHARACTER*50 ERR0R2SELECTI0N
ERR0R2SELECTI0N = ' ERROR. .. INVALID SELECTION, TRY AGAIN.'

C

c

c GPIB Commands : values

data UNL/63/ ,UNT/95/ , GTL/01/ , SDC/04/ , PPC/05/
data GET/08/, TCT/09/, LLO/17/ , DCL/20/ , PPU/21/
data SPE/24/ , SPD/25/ , PPE/96/ , PPD/112/

c GPIB status bit vector: values
c To check for error in ibsta - if (ibsta .LT. 0)...

c data ERR/-32768/

data TIMO/16384/ , END/8192/ , SRQI/4096/
data RQS/2048/ , CMPL/256/ , LOK/128/ , REM/64/ , CIC/32/
data ATN/16/ , TACS/8/ , LACS/4/ , DTAS/2/ , DCAS/1/

c Iberr error messages: values

data EDVR/0/ , ECIC/1/ , ENOL/2/ , EADR/3/ , EARG/4/
data ESAC/5/ , EABO/6/ , ENEB/7/ , EOIP/10/ , ECAP/11/
data EFSO/12/ , EBUS/14/ , ESTB/15/ , ESRQ/16/

c EOS mode bit values

data BIN/4096/, XEOS/2048/ , REOS/1024/

c Timeout values

data TNONE/0/ , T10us/1/ , T30us/2/ , T100us/3/ , T300us/4/
data Tlms/5/ , T3ms/6/ , T10ms/7/ , T30ms/8/ , T100ms/9/
data T300ms/10/,Tls/ll/,T3s/12/T10s/13/,T30s/14/
data T100s/15/ , T300s/16/ , T1000s/17/

c Miscellaneous values

data S/08/.LF/10/

51

www.manaraa.com

APPENDIX B

GPIBX PROGRAM LISTING

This is a listing of the developed system controller program called
GPIBX.

$ INCLUDE: 'DECL.FOR'
C

C GPIBX. FOR
C

C IBM- PC/AT GPIB CONTROLLER PROGRAM
C

C MAIN PROGRAM
C

C***** THIS CALL INITIALIZES THE GPIB BUS *****

CALL IBINIT (IBSTA)
C

1 CALL CLEAR
2 CALL MAINMENU

READ (*,10) SELECTION
10 FORMAT (1A1)

IF (SELECTION . EQ . 'P') THEN
CALL PS

ELSEIF (SELECTION . EQ . 'D') THEN
CALL DMM

ELSEIF (SELECTION .EQ. 'C') THEN
CALL COUNTER

ELSEIF (SELECTION . EQ . 'S') THEN
CALL SIGGEN

ELSEIF (SELECTION . EQ .
'0') THEN

CALL OSCOPE
ELSEIF (SELECTION .EQ. 'F') THEN

CALL FUNCMU
ELSEIF (SELECTION .NE. 'X') THEN

WRITE (*,20) ERROR2SELECTION
20 FORMAT ('0' ,1A50)

GOTO 2

ELSE
STOP

END IF
GOTO 1

END
C

C

SUBROUTINE CLEAR
C***** THIS CLEARS THE SCREEN *****
C ---SOME DECLARATIONS. . .

C

CHARACTER*! CI, C2 , C3 , C4

52

www.manaraa.com

INTEGER*2 IC(4)
EQUIVALENCE (CI

,
IC(1))

,

(C2
,
IC(2)) ,

(C3

,

IC(3)) ,
(C4

,

IC(4))

DATA IC/16^1B,16#5B, 16^32 , 16??4A/

C

WRITE (*,1) C1,C2,C3,C4
1 FORMAT (1X.4A1)

RETURN
END

C

C

SUBROUTINE MAINMENU
C***** THIS PUT THE MAIN MENU ON THE SCREEN *****

C - - -SOME DECLARATIONS . .

.

C MENUDIS: MENU DISPLAY
CHARACTER*50 MENUDIS , PS5010 , DM5010 , DC5009 , WAVTEK , TEK , EXIT , FUNC
MENUDIS = ' *** MAIN MENU ***'

PS5010 = 'P POWER SUPPLY'
DM5010 = 'D DIGITAL MULTIMETER'
DC5009 = 'C COUNTER/TIMER'
WAVTEK = ' S SIGNAL GENERATOR'
TEK = '0 OSCILLOSCOPE'
FUNC = ' F special FUNCTIONS '

EXIT - 'X EXIT PROGRAM'
C

WRITE (*,10) MENUDIS
10 FORMAT ('0' ,1A50)

WRITE (*,20) PS5010
20 FORMAT ('0' ,1A50)

WRITE (*,20) DM5010
WRITE (*,20) DC5009
WRITE (*,20) WAVTEK
WRITE (*,20) TEK
WRITE (*,20) FUNC
WRITE (*,20) EXIT
WRITE (*,30)

30 FORMAT (' ', 9X, ' ENTER YOUR SELECTION.
'

)

C

RETURN
END

C

C

SUBROUTINE PS

C***** THIS IS THE DRIVER FOR THE POWER SUPPLY *****

C ---SOME DECLARATIONS. .

.

C PSSELECT: POWER SUPPLY MENU SELECTION
C

CHARACTER*! PSSELECT
C

C

1 CALL CLEAR
2 WRITE (*,10)

53

www.manaraa.com

WRITE (* ,20)

WRITE (* ,30)

WRITE (* ,40)

WRITE (* ,50)

WRITE (* ,60)

WRITE (* ,65)

c

10 FORMAT (
'0'

,

20 FORMAT (
'0'

,

30 FORMAT (
0'

,

40 FORMAT (
0'

,

50 FORMAT (
0'

,

60 FORMAT (
0'

,

65 FORMAT (
0'

,

C

70

80

'*** POWER SUPPLY MENU ***')
'1 SET VOLTAGES')

'2 SET CURRENT')

'3 ENABLE OUTPUT')

'RET RETURN TO MAIN MENU')
'X EXIT PROGRAM')

9X, 'ENTER YOUR SELECTION.
'

)

t**

READ (*,70) PSSELECT
FORMAT (1A1)

IF (PSSELECT .EQ. '1') THEN
CALL SETVOLT

ELSEIF (PSSELECT . EQ .
'2') THEN

CALL SETCURRENT
ELSEIF (PSSELECT .EQ. '3') THEN

CALL OUTONOFF
ELSEIF (PSSELECT . EQ .

' ') THEN
RETURN

ELSEIF (PSSELECT .EQ. 'X') THEN
STOP

ELSE
WRITE (*,80)
FORMAT (' '

,

GOTO 2

INVALID INPUT, TRY AGAIN')

END IF
GOTO 1

END

SUBROUTINE DMM
THIS IS THE DRIVER FOR THE DIGITAL MULTIMETER *****
CHARACTERS ACDC(4) ,ACV(3) ,DCV(3) ,DIODE(5) ,0HMS(4) .DMMSEL
INTEGER WRT(512),DVM

ACV(1)= 'A'

ACV(2)= 'C
ACV(3)= 'V

ACDC(l)- 'A'

ACDC(2)= 'C
ACDC(3)= 'D'

ACDC(4)= 'C

DCV(1)= 'D'

54

www.manaraa.com

DCV(2)= 'C
DCV(3)= 'V

DI0DE(1)=
DI0DE(2)=
DI0DE(3)=
DI0DE(4)=
DI0DE(5)=

D'

I'

0'

D'

E'

C

10

20

30

40
50

60

70

80

90

C

100
c

0HMS(1)= '0'

OHMS(2)= 'H'

OHMS(3)= 'M'

0HMS(4)= 'S'

CALL CLEAR
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(*

(*

(*

(*

(*

(*

(*

(*

(*

(

(

(

(

(

(

(

(

(

10)

20)

30)

40)

50)

60)

70)

80)

90)

0'

0'

0'

0'

0'

0'

0'

0'

0'

'*** DIGITAL MULTIMETER MENU **"

'

1

DC VOLTS
'

)

'2 OHMS '

)

'3 AC VOLTS rms')
'4 AC+DC VOLTS rms')
'5 DIODE TEST')
' RET RETURN TO MAIN MENU ')

'X EXIT')
'ENTER YOUR SELECTION')

READ (*,100) DMMSEL
FORMAT (1A1)

DVM= IBFIND ('DMM '

)

IF (DMMSEL .EQ. '1')

CALL STRING
CALL IBWRT (

ELSEIF (DMMSEL . EQ

.

CALL STRING
CALL IBWRT (

ELSEIF (DMMSEL . EQ

.

CALL STRING
CALL IBWRT (

ELSEIF (DMMSEL . EQ

.

CALL STRING
CALL IBWRT (

THEN
(DCV,3,WRT)
DVM , WRT , 3

)

'
2

'
) THEN

(OHMS, 4, WRT)
DVM, WRT ,4)
'
3

'
) THEN

(ACV,3,WRT)
DVM , WRT , 3

)

'
4

'
) THEN

(ACDC,4,WRT)
DVM, WRT, 4)

55

www.manaraa.com

110

c

c

Q-Jck-k-k:

c

99

C

c

c

c

c

c

1

2

c

10

20

30

40

50

60

65

70

80

ELSEIF (DMMSEL .EQ. '5') THEN
CALL STRING (DIODE , 5 , WRT)

CALL IBWRT (DVM,WRT,5)

ELSEIF (DMMSEL . EQ .
' ') THEN

RETURN
ELSEIF (DMMSEL . EQ . 'X') THEN

STOP
ELSE

WRITE (*,110)
FORMAT (' ',' INVALID SELECTION, TRY AGAIN')
GOTO 2

END IF
GOTO 1

END

SUBROUTINE COUNTER
THIS IS THE UNDEVELOPED DRIVER FOR THE COUNTER/TIMER

- - -SOME DECLARATIONS . .

.

RETURN
END

SUBROUTINE SIGGEN
THIS IS THE SIGNAL GENERATOR DRIVER *****
---SOME DECLARATIONS...
SIGSEL: SIGGEN MENU SELECTION

CHARACTER*! SIGSEL

•k-Jck

CALL
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

CLEAR
(*,10)
(*

(*

(*

(*

(*

C*
(*

(*

(*

FORMAT (

FORMAT (

FORMAT (

FORMAT (

FORMAT (

FORMAT (

FORMAT (

FORMAT (

FORMAT (

20)

30)

40)

50)

60)

65)

70)

80)

90)

0'

0'

0'

0'

0'

0'

0'

0'

0'

'*** SIGNAL GENERATOR MENU ***'
'1 FREQUENCY')
'2 AMPLITUDE')
'3 FUNCTION')
'4 OFFSET')

'5 OUTPUT ENABLE '

)

'6 SWEEP FREQUENCIES '

)

'RET RETURN TO MAIN MENU')

'X EXIT')

56

www.manaraa.com

90 FORMAT (' 0'
, 9X, ' ENTER YOUR SELECTION'

)

C

READ (*,100) SIGSEL
100 FORMAT (1A1)

C

IF (SIGSEL .EQ. '1') THEN
CALL FREQ

ELSEIF (SIGSEL .EQ. '2') THEN
CALL AMP

ELSEIF (SIGSEL . EQ .
'3') THEN

CALL FUNC
ELSEIF (SIGSEL .EQ. '4') THEN

CALL OFFSET
ELSEIF (SIGSEL .EQ. '5') THEN

CALL SIGOUT
ELSEIF (SIGSEL . EQ .

'6') THEN
CALL SWEEP

ELSEIF (SIGSEL . EQ .
' ') THEN

RETURN
ELSEIF (SIGSEL .EQ. 'X') THEN

STOP
ELSE

WRITE (*,110)
110 FORMAT ('0' , 'INVALID RESPONSE, TRY AGAIN.')

GOTO 2

ENDIF
GOTO 1

END
C

C

SUBROUTINE FREQ
C***** THIS MAKES THE SIGGEN OUTPUT A SPECIFIED FREQUENCY *****

INTEGER DVM,I,WRT(512)
CHARACTERS FREQ(13) , INPUT (11)

C

FREQ(1)= 'F'

FREQ(13)= 'I' T '

DVM= IBFIND ('SIGGEN ')

WRITE (*,10)
10 FORMAT ('0' ,9X, 'ENTER DESIRED FREQUENCY AS XXX. XEX (. 01Hz - 12MHz)

'

)

C

READ (*,20) INPUT
20 FORMAT (llAl)

C

DO 30 1= 1,11
FREQ(I+1)= INPUT(I)

30 CONTINUE
C

CALL STRING (FREQ, 13 , WRT)
CALL IBWRT (DVM,WRT,13)

57

www.manaraa.com

RETURN
END

C

C

SUBROUTINE AMP
C***** THIS MAKES THE SIGGEN OUTPUT A SPECIFIED AMPLITUDE *****

INTEGER DVM,I,WRT(512)
CHARACTER*! AMP (13) , INPUT(ll)

C

AMP(1)= 'A'

AMP(13)= 'I'

C

DVM= IBFIND ('SIGGEN ')

WRITE (*,10)
10 FORMAT ('0' ,9X, 'ENTER DESIRED AMPLITUDE AS XX.XEX (FREE FORMAT)')

WRITE (*,15)
15 FORMAT ('0' ,9X, 'SIGNAL AMPLITUDE IS Vpp FROM lOmV TO 10. OV)
C

READ (*,20) INPUT
20 FORMAT (llAl)
C

DO 30 1= 1,11
AMP(I+1)= INPUT(I)

30 CONTINUE
C

CALL STRING (AMP,13,WRT)
CALL IBWRT (DVM,WRT,13)
RETURN
END

C

C

SUBROUTINE FUNC
C***** THIS MAKES THE SIGGEN OUTPUT A SPECIFIED WAVEFORM *****

INTEGER DVM,I,WRT(512)
CHARACTERS INPUT, CO (3) , Cl(3) , C2 (3) , C3 (3) , C4(3)

C

C0(1)= 'C
C0(2)= '0'

C0(3)= 'I'

C

Cl(l)= 'C
Cl(2)= '1'

Cl(3)= 'I'

C

C2(l)= 'C
C2(2)= '2'

C2(3)= 'I'

C

C3(l)= 'C
C3(2)= '3'

C3(3)= 'I'

www.manaraa.com

10

20

30

40
50

60

70

80

C

90

C

C4(l)= 'C
C4(2)= '4'

C4(3)= 'I'

DVM= IBFIND ('SIGGEN ')

CALL CLEAR
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(*,10)

(*,20)
(*,30)

(*,40)
(*

(*

(*

(*

(

(

(

50)

60)

70)

80)
0'

0'

0'

('0'

('0'

('0'

('0'

('0'

'*** SIGNAL GENERATOR FUNCTION MENU ***')
'1 SINE WAVE')
'2 TRIANGLE WAVE ')

'3 SQUARE WAVE in phase with sync output')

'4 SQUARE WAVE out of phase with sync output')

'5 DC OUTPUT VOLTAGE
'

)

'RET RETURN TO SIGNAL GENERATOR MAIN MENU'

)

'X EXIT PROGRAM')

READ (*,90) INPUT
FORMAT (1A1)

IF (INPUT .EQ. '1') THEN
CALL STRING (C0,3,WRT)
CALL IBWRT (DVM,WRT,3)

ELSEIF (INPUT .EQ. '2') THEN
CALL STRING (C1,3,WRT)
CALL IBWRT (DVM,WRT,3)

ELSEIF (INPUT . EQ .
'3') THEN

CALL STRING (C2,3,WRT)
CALL IBWRT (DVM,WRT,3)

ELSEIF (INPUT .EQ. '4') THEN
CALL STRING (C3,3,WRT)
CALL IBWRT (DVM,WRT,3)

ELSEIF (INPUT . EQ .
'5') THEN

CALL STRING (C4,3,WRT)
CALL IBWRT (DVM,WRT,3)

ELSEIF

ELSEIF

ELSE

(INPUT .EQ.

RETURN
(INPUT .EQ.

STOP

) THEN

'X') THEN

100
WRITE (*,100)
FORMAT (' ' , 9X

,

GOTO 2

INVALID ENTRY, TRY AGAIN')

59

www.manaraa.com

ENDIF
GOTO 1

END
c

c

SUBROUTINE OFFSET
Q-k-k-k-k'k THIS ENTERS A DC OFFSET FOR THE SIGGEN OUTPUT *****

INTEGER DVM,I,WRT(512)

c

CHARACTERS D(6) , INPUT(4)

D(l)= 'D'

D(6)= 'I'

DVM= IBFIND ('SIGGEN '

)

WRITE (*,10)
10 FORMAT ('0' ,9X, 'ENTER DESIRED OFFSET AS -5.00 TO +5.00 VOLTS')
C

READ (*,20) INPUT
20 FORMAT (4A1)

C

DO 30 1= 1,4
D(I+1)= INPUT(I)

30 CONTINUE
C

CALL STRING (D,6,WRT)
CALL IBWRT (DVM,WRT,6)
RETURN
END

C

C

SUBROUTINE SIGOUT
C***** THIS TOGGLES THE SIGGEN OUTPUT *****

CHARACTERS P0(3) , PI (3) , INPUT
INTEGER WRT(512),DVM

DVM = IBFIND ('SIGGEN ')

C

P0(1)= 'P'

P0(2)= '0'

P0(3)= 'I'

C

Pl(l)= 'P'

Pl(2)= '1'

Pl(3)- 'I'

C

1 WRITE (*,10)
10 FORMAT ('0' ,9X, 'SIGNAL GENERATOR OUTPUT ON? ENTER Y OR N')
C

READ (*,20) INPUT
20 FORMAT (1A1)

IF (INPUT .EQ. 'Y') THEN

60

www.manaraa.com

CALL STRING (P1,3,WRT)
CALL IBWRT (DVM,WRT,3)

ELSEIF (INPUT . EQ . 'N') THEN
CALL STRING (P0,3,WRT)
CALL IBWRT (DVM,WRT,3)

ELSE
WRITE (*,30)

30 FORMAT (' ',' INVALID RESPONSE, TRY AGAIN')
GOTO 1

ENDIF
RETURN
END

C

C

SUBROUTINE SWEEP
C***** THIS SWEEPS THRU A RANGE OF FREQUENCIES *****

CHARACTER*8 INPUTA, INPUTB
CHARACTER*1 FREQ (10) , TEMP (8) , INPUTC
INTEGER I,J,K,L,DVM,STEPS,WRT(512) ,TEMPA
REAL STARTF.STEPF, VALUE

FREQ(l) = 'F'

FREQ(IO) = 'I'

DVM = IBFIND ('SIGGEN ')

CALL CLEAR
WRITE (*,10)

10 FORMAT ('0', 'SWEEP FREQUENCIES FUNCTION')
WRITE (*,20)

20 FORMAT (' ',' ENTER STARTING FREQUENCY AS XXX. XEX (. 01Hz - 12MHz)
'

)

READ (*,30) INPUTA
30 FORMAT (1A8)

WRITE (*,40)
40 FORMAT (' ',' ENTER FREQUENCY STEP SIZE AS XXX. XEX (. 01Hz - 12MHz)

'

)

READ (*,30) INPUTB
WRITE (*,50)

50 FORMAT (' ',' ENTER NUMBER OF STEPS 1-99')

READ (*,60) STEPS
60 FORMAT (112)
C

READ (INPUTA, 65) STARTF
65 FORMAT (BNF8.0)

READ (INPUTB, 65) STEPF
C

READ (INPUTA, 80) TEMP
80 FORMAT (8A1)
C

DO 70 1=1, STEPS
DO 90 J=l,8

FREQ(J+1)=TEMP(J)

61

www.manaraa.com

90

95

100

110

120

70

C

C

c

1

2

c

10

20

30

40

50

60

70

C

100

C

CONTINUE
CALL STRING (FREQ , 10 , WRT)
CALL IBWRT (DVM,WRT,10)
WRITE (*,95) STARTF
FORMAT (' '

,

' FREQUENCY IS NOW '
, F10 . 2

,

' Hz ')

WRITE (*,100) I

FORMAT ('0' , 'STEP #' ,12,

COMPLETE. ENTER RET TO CONTINUE OR ANY OTHER KEY TO END')

READ (*,110) INPUTC
FORMAT (1A1)

IF (INPUTC .NE. ' ') THEN
RETURN

ELSE
STARTF = STARTF + STEPF
VALUE = STARTF
DO 120 K-1,8

TEMPA = INT(STARTF/(10**(8-K)))
TEMP(K) = CHAR (TEMPA + 48)
STARTF = STARTF - (TEMPA*10**(8-K)

)

CONTINUE
STARTF = VALUE

ENDIF
CONTINUE
RETURN
END

SUBROUTINE OSCOPE
THIS IS THE OSCOPE DRIVER *****

DVM - IBFIND ('OSCOPE ')

CALL CLEAR
WRITE (*,10)
WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

WRITE (*

FORMAT (

FORMAT (

FORMAT (

FORMAT (

FORMAT (

FORMAT (

FORMAT (

20)

30)

40)

50)

60)

70)

0'

0'

0'

0'

0'

0'

0'

'*** OSCOPE MENU ***')
' 1 RECORD WAVEFORM DATA')

'2 GO TO LOCAL')
'3 REMOTE ENABLE '

)

'RET RETURN TO MAIN MENU')
'X EXIT')
'ENTER YOUR SELECTION')

READ (*,100) SELECTION
FORMAT (1A1)

62

www.manaraa.com

IF (SELECTION . EQ .
'1') THEN

CALL RECORD
ELSEIF (SELECTION .EQ. '2') THEN

CALL IBLOC (DVM)

ELSEIF (SELECTION . EQ .
'3') THEN

DVM = IBFIND ('OSCOPE ')

ELSEIF (SELECTION .EQ. ' ') THEN
RETURN

ELSEIF (SELECTION . EQ . 'X') THEN
STOP

'ELSE

WRITE (*,110)
110 FORMAT (' ',' INVALID SELECTION, TRY AGAIN'

)

GOTO 2

ENDIF
GOTO 1

END
C

C

SUBROUTINE RECORD
C***** THIS IS THE WAVEFORM RECORDING DRIVER *****

CHARACTERS SEL, ACCESM(4) , ASCII(2), RECORM(13), RELALM(7)
CHARACTER*15 REC , ACCESS, RELALL, FILNAM
INTEGER WRT(512) , DVM
REAL TIMDIV,VOLDIV

C

ASCII(l) = 'A'

ASCII(2) = 'S'

REC = 'SEL SAVE.R;C?'
RELALL = 'REL ALL'

C

DVM = IBFIND ('OSCOPE ')

1 CALL CLEAR
C

WRITE (*,800)
800 FORMAT ('0','THIS PROGRAM CREATES A DATA FILE THAT CAN BE')

WRITE (*,810)
810 FORMAT (' '

,

' BE USED WITH THE SLIDE WRITE PLUS PROGRAM TO')
WRITE (*,820)

820 FORMAT (' '
,

' PLOT THE WAVEFORMS ON THE OSCOPE. ADJUST THE')
WRITE (*,830)

830 FORMAT (' ',' SCOPE FOR A PROPERLY TRIGGERED TRACE, NO JITTER')
WRITE (*,840)

840 FORMAT (' '
, 'USE THE HORIZ CONTROL TO LEFT JUSTIFY THE TRACES')

C

2 WRITE (-,10)
10 FORMAT ('0' , 'SELECT WAVEFORM DESIRED'

)

WRITE (*,20)
20 FORMAT ('0',' 1 RIGHT COMPARTMENT CHANNEL 1')

WRITE (*,30)
30 FORMAT (' ',' 2 RIGHT COMPARTMENT CHANNEL 2')

63

www.manaraa.com

WRITE (*,40)

40 FORMAT (' ',' ENTER YOUR SELECTION 1 OR 2')

READ (*,50) SEL

50 FORMAT (1A1)

IF (SEL .EQ. '1') THEN
ACCESS = 'A Rl'

ELSEIF (SEL .EQ. '2') THEN
ACCESS = 'A R2'

ELSE
WRITE (*,60)

60 FORMAT (' ',' INVALID SELECTION, TRY AGAIN')

GOTO 2

END IF
C

READ (ACCESS ,70) ACCESM
70 FORMAT (4A1)

C

CALL STRING (ACCESM, 4 ,WRT)

CALL IBWRT (DVM,WRT,4)

C

CALL STRING (ASCII , 2 , WRT)

CALL IBWRT (DVM,WRT,2)
C

c

READ (REC,80) RECORM
80 FORMAT (13A1)

CALL STRING (RECORM, 13 , WRT)

CALL IBWRT (DVM,WRT,13)

CALL IBRDF (DVM, 'SCOPE ')

C

C

WRITE (*,300)
300 FORMAT (' ',' ENTER TIME/DIV AS X.XXEX'

)

READ (*,310) TIMDIV
310 FORMAT (1BNF10.7)

TIMDIV = TIMDIV * 10 .

WRITE (*,320)
320 FORMAT (' ',' ENTER VOLTS/DIV AS X.XXEX')

READ (*,330) VOLDIV
330 FORMAT (1BNE12.6)
C

CALL SCALER (TIMDIV , VOLDIV)
C

READ (RELALL,110) RELALM
110 FORMAT (7A1)

CALL STRING (RELALM , 7 , WRT)
CALL IBWRT (DVM, WRT, 7)

CALL IBLOC (DVM)

WRITE (*,900)
900 FORMAT ('0','YOU CAN NOW USE SLIDE WRITE PLUS TO PLOT YOUR')

WRITE (*,910)

64

www.manaraa.com

910 FORMAT (' '
,

' DATA FILES. HIT ENTER TO CONTINUE')
READ (*,920) SEL

920 FORMAT (1A1)

RETURN
END

C

C

SUBROUTINE SCALER (TIMDIV, VOLDIV)
C***** THIS SCALES THE DATA RECEIVED FROM THE OSCOPE *****

CHARACTER* 6 CURVE
INTEGER I , J , K , MINUS , L , COUNT , END , NOPTS
CHARACTERS OSDATA (5000), COMMA
REAL YDATA(1016) ,YTEMP(3) , TIMDIV , VOLDIV ,XDATA, OFFSET
CHARACTER*12 FILNAM

COMMA=
'

,

'

NOPTS = 508

IF (TIMDIV .LT. 0.000075) NOPTS = 1016

OPEN (1, FILE-' SCOPE ', STATUS=' OLD' , FORM=' BINARY'

)

READ (1) CURVE

C

c

c

c

c

1 = 1

1 READ (1,ERR=30,END=40) OSDATA(I)
I - 1+1
GOTO 1

30 WRITE (*,50)
50 FORMAT (' ',' ERROR IN READING FILE')
40 CLOSE (1)

C

COUNT = I

END = COUNT -3

C

1 = 1

K = 1

J = 1

MINUS =

100 IF (OSDATA(I) . EQ .
'-') THEN

MINUS = 1

I = 1+1

END IF
YTEMP(K) = FLOAT (ICHAR (OSDATA(I)))
YTEMP(K) = YTEMP(K) -48.0
I = 1+1
K = K+l
IF (K .GT. 7) STOP
IF (OSDATA(I) .NE. ',') THEN

GOTO 100

ELSE

65

www.manaraa.com

GOTO 118

END IF
118 K = K-l

IF (K .EQ. 3) THEN
YDATA(J) = (100.0*YTEMP(K-2))+(10.0*YTEMP(K-l))+YTEMP(K)

ELSEIF (K .EQ. 2) THEN
YDATA(J) = (10.0*YTEMP(K-1))+YTEMP(K)

ELSEIF (K .EQ. 1) THEN
YDATA(J) = YTEMP(K)

ENDIF
IF (MINUS .EQ. 1) YDATA(J) = O.O-YDATA(J)
YDATA(J) = ((YDATA(J)+15.0)/100.)*VOLDIV
J = J+l
I = 1+1

MINUS =

IF (J .EQ. NOPTS) GOTO 120

K = 1

GOTO 100

C

120 WRITE (*,400)
400 FORMAT ('0', 'ENTER DOS FILE NAME TO STORE WAVEFORM DATA IN')

READ (*,410) FILNAM
410 FORMAT (1A12)

OPEN (2 , FILE=FILNAM , STATUS= ' NEW
'

, FORM= ' FORMATTED
'

)

1=1

K-l
XDATA =0.0
IF (NOPTS .EQ. 508) THEN

420 WRITE (2,220) XDATA, COMMA, YDATA(I)
220 FORMAT (E10 . 5 , Al , F10 . 3)

XDATA = (TIMDIV*I)/508.0
1=1+1
K=K+1
IF (K .EQ. 5) 1=1+1
IF (K .EQ. 5) K=l
IF (I .EQ. 501) GOTO 300
GOTO 420

ELSE
OFFSET = TIMDIV/1016
DO 500 1=1,1016,3

XDATA = OFFSET * (1-1)
WRITE (2,220) XDATA, COMMA, YDATA(I)

500 CONTINUE
END IF

300 CLOSE(2)
RETURN
END

C

C

SUBROUTINE SETVOLT
C***** THIS SETS THE POWER SUPPLY OUTPUT VOLTAGE *****

66

www.manaraa.com

CHARACTER*! SVOPT

1 CALL CLEAR
2 WRITE (*,10)

WRITE (*,20)
WRITE (*,30)
WRITE (*,40)
WRITE (*,50)
WRITE (*,60)
WRITE (*,65)

10 FORMAT (' '

,

20 FORMAT (' '

,

30 FORMAT (' '

,

40 FORMAT (' '

,

50 FORMAT (' '

,

60 FORMAT (' '

,

65 FORMAT (' '

,

C

70

80

'*** VOLTAGE SETTING MENU
'1 VPOS')
'2 VNEG '

)

'3 VLOGIC)
' RET RETURN TO POWER
'X EXIT PROGRAM')

9X, 'ENTER YOUR SELECTION.'

SUPPLY MENU')

READ (*,70) SVOPT
FORMAT (1A1)

IF (SVOPT .EQ. '1') THEN
CALL VPOS

ELSEIF (SVOPT . EQ .
'2') THEN

CALL VNEG
ELSEIF (SVOPT .EQ. '3') THEN

CALL VLOG
ELSEIF (SVOPT .EQ. ' ') THEN

RETURN
ELSEIF (SVOPT .EQ. 'X') THEN

STOP
ELSE

WRITE (*,80)
FORMAT ('0',' INVALID INPUT, TRY AGAIN')
GOTO 2

END IF
GOTO 1

END
C

C

SUBROUTINE SETCURRENT
C***** THIS SETS THE POWER SUPPLY CURRENT LIMITS *****

CHARACTER*! SCOPT
c

1 CALL CLEAR
2 WRITE (*,10)

WRITE (*,20)
WRITE (*,30)
WRITE (*,40)
WRITE (*,50)
WRITE (*,60)
WRITE (*,65)

67

www.manaraa.com

c

10 FORMAT (
0'

,

20 FORMAT (
0'

,

30 FORMAT (
0'

,

40 FORMAT (
0'

,

50 FORMAT (
0'

,

60 FORMAT (
0'

,

65 FORMAT (
0'

,

C

'*** CURRENT SETTING MENU ***')
'1 IPOS')

'2 INEG')

'3 ILOGIC)

'RET RETURN TO POWER SUPPLY MENU')

'X EXIT PROGRAM')

9X, 'ENTER YOUR SELECTION.
'

)

READ (*,70) SCOPT
70 FORMAT (lAl)

IF (SCOPT .EQ. '1') THEN
CALL IPOS

ELSEIF (SCOPT . EQ .
'2') THEN

CALL INEG
ELSEIF (SCOPT . EQ .

'3') THEN
CALL ILOG

ELSEIF (SCOPT .EQ. ' ') THEN
RETURN

ELSEIF (SCOPT . EQ . 'X') THEN
STOP

ELSE
WRITE (*,80)

80 FORMAT ('0',' INVALID INPUT, TRY AGAIN')
GOTO 2

ENDIF
GOTO 1

END
C

C

SUBROUTINE OUTONOFF
C***** THIS TOGGLES THE POWER SUPPLY OUTPUTS *****

CHARACTERS ANSWER, MSGYES(6), MSGNO(7)
INTEGER I,J,K,WRT(512) , DVM

MSGYES(l) = '0'

MSGYES(2) = 'U'

MSGYES(3) - 'T'

MSGYES(4) = i i

MSGYES(5) = •0'

MSGYES(6) = 'N'

MSGNO(l) = '0'

MSGNO(2) = 'U'

MSGNO(3) = / ry i

MSGN0(4) = t r

MSGNO(5) = '0'

MSGNO(6) = 'F'

MSGNO(7) = 'F'

DVM = IBFIND (
' PS '

)

68

www.manaraa.com

c

1 WRITE (*,10)
10 FORMAT ('0',' POWER SUPPLY OUTPUTS ON? ENTER Y OR N.')

READ (*,20) ANSWER
20 FORMAT (1A1)

IF (ANSWER .EQ. 'Y') THEN
CALL STRING (MSGYES , 6 , WRT)
CALL IBWRT (DVM,WRT,6)

ELSEIF (ANSWER .EQ. 'N') THEN
CALL STRING (MSGNO , 7 , WRT)
CALL IBWRT (DVM,WRT,7)

ELSE
WRITE (*,30)

30 FORMAT (' ',' INCORRECT INPUT, TRY AGAIN')
GOTO 1

END IF
RETURN
END

C

C

SUBROUTINE VPOS
C***** THIS MAKES THE POWER SUPPLY OUTPUT A SPECIFIED POSITIVE VOLTAGE

CHARACTER* 1 VPOS (9)

CHARACTER* 1 INPUT (4)

INTEGER I , J, K, WRT (512) , DVM
C

VPOS(l) = 'V
VPOS (2) = 'P'

VPOS (3) - '0'

VPOS (4) = 'S'

VPOS(5) = '
'

C

WRITE (*,10)
10 FORMAT ('0',' ENTER DESIRED POSITIVE VOLTAGE AS',

+' X.XX (0-32. OVdc)')
READ (*,20) INPUT

20 FORMAT (4Al)

DO 30 1= 6,9

K- 1-5
VPOS(I) = INPUT(K)

30 CONTINUE
CALL STRING (VPOS,9,WRT)
DVM - IBFIND ('PS ')

CALL IBWRT (DVM, WRT, 9)

RETURN
END

C

C

SUBROUTINE VNEG
C***** THIS MAKES THE PS OUTPUT A SPECIFIED NEG VOLTAGE *****

CHARACTER*! VNEG (9)

69

www.manaraa.com

CHARACTERS INPUT (4)

INTEGER I,J,K,WRT(512) ,DVM

C

VNEG(l) = 'V
VNEG(2) = 'N'

VNEG(3) = 'E'

VNEG(4) = 'G'

VNEG(5) = '
'

C

WRITE (*,10)
10 FORMAT ('0',' ENTER DESIRED NEGATIVE VOLTAGE AS',

+' X.XX (0-32. OVdc')

READ (*,20) INPUT
20 FORMAT (4A1)

DO 30 1= 6,9

K- 1-5

VNEG(I) = INPUT (K)

30 CONTINUE
CALL STRING (VNEG,9,WRT)
DVM = IBFIND (

' PS '

)

CALL IBWRT (DVM.WRT.9)
RETURN
END

C

C

SUBROUTINE VLOG
C***** THIS MAKES THE PS OUTPUT A SPECFIED LOGIC VOLTAGE *****

CHARACTERS VLOG(9)
CHARACTERS INPUT (4)

INTEGER I,J,K,WRT(512) , DVM

VLOG(l) == 'V
VLOG(2) = 'L'

VLOG(3) == '0'

VLOG (4) == 'G'

VLOG(5) =_ i i

WRITE (*, 10)

FORMAT (
'0'

,

' ENTER DESIRED
X.XX (-4. 50 TO 5.50 Vdc')

10 FORMAT ('0',' ENTER DESIRED LOGIC VOLTAGE AS
+' X.XX (-4.50 TO 5.!

READ (*,20) INPUT
20 FORMAT (4A1)

DO 30 1= 6,9
K= 1-5

VLOG (I) = INPUT (K)

30 CONTINUE
CALL STRING (VLOG,9,WRT)
DVM = IBFIND ('PS ')

CALL IBWRT (DVM,WRT,9)
RETURN
END

70

www.manaraa.com

c

c

SUBROUTINE IPOS
C***** THIS SET THE PS POS CURRENT MAXIMUM *****

CHARACTERS IPOS (9)

CHARACTER* 1 INPUT (4)

INTEGER I,J,K,WRT(512) , DVM
C

IPOS(l) - 'I'

IPOS (2) = 'P'

IPOS(3) = '0'

IP0S(4) = 'S'

IPOS (5) = '
'

C

WRITE (*,10)
10 FORMAT ('0',' ENTER DESIRED POSITIVE CURRENT MAXIMUM'

+' AS X.XX (1.60Amax')
READ (*,20) INPUT

20 FORMAT (4A1)

DO 30 1= 6,9

K- 1-5

IPOS (I) = INPUT(K)
30 CONTINUE

CALL STRING (IP0S,9,WRT)
DVM = IBFIND (' PS '

)

CALL IBWRT (DVM,WRT,9)
RETURN
END

C

C

SUBROUTINE INEG
C***** THIS SETS THE PS NEG CURRENT MAXIMUM *****

CHARACTERS INEG (9)

CHARACTERS INPUT (4)

,J,K,WRT(512) ,DVMINTEGER I.J.K

INEG(l) = 'I'

INEG (2) = 'N'

INEG (3) = 'E'

INEG(4) = 'G'

INEG(5) / f

WRITE (*,10)
10 FORMAT ('0',' ENTER DESIRED NEGATIVE CURRENT MAXIMUM'

+' AS X.XX (1.60Amax) ')

READ (*,20) INPUT
20 FORMAT (4A1)

DO 30 1= 6,9
K= 1-5

INEG(I) = INPUT (K)

30 CONTINUE

71

www.manaraa.com

CALL STRING (INEG,9,WRT)

DVM = IBFIND ('PS '

)

CALL IBWRT (DVM,WRT,9)

RETURN
END

C

C

SUBROUTINE ILOG

C***** THIS SETS THE PS LOGIC CURRENT MAXIMUM *****

CHARACTERS ILOG(9)
CHARACTERS INPUT (4)

INTEGER I,J,K,WRT(512) ,DVM

ILOG(l) = 'I'

ILOG(2) = 'L'

ILOG(3) = '0'

ILOG (4) = 'G'

IL0G(5) = ' '

c

WRITE (*,10)
10 FORMAT (' '

,
ENTER DESIRED LOGIC CURRENT'

,

+' MAXIMUM AS X.XX (1 . 60Amax)
'

)

READ (*,20) INPUT
20 FORMAT (4A1)

DO 30 1= 6,9

K- 1-5

ILOG(I) - INPUT (K)

30 CONTINUE
CALL STRING (ILOG,9,WRT)
DVM = IBFIND ('PS ')

CALL IBWRT (DVM,WRT,9)
RETURN
END

C

C

SUBROUTINE STRING (INPUT , LENGTH ,WRT)

C***** THIS CONVERTS CHARACTER STRINGS INTO REQUIRED FORM FOR IBWRT **

CHARACTERS INPUT (30)

INTEGER LENGTH,I,J,K,WRT(512)
J= 1

DO 10 1=1, LENGTH ,2

K- 1+1

WRT(J)= ICHAR(INPUT(I)) + (ICHAR(INPUT(K))*256

)

J- J+l
10 CONTINUE

RETURN
END

C

C

SUBROUTINE FINDER
C***** THIS HELPS TO FIND GPIB ERRORS *****

72

www.manaraa.com

IBERR, IBCNT

10

C

c

Q'k'k-k-k~k

10

c

c

Q-k-k-k-k-k

c

10

c

c

c

c

c

c

1

2

c

c

c

10

20

30

40
50

60

65

COMMON /IBGLOB/ IBSTA,
WRITE (*,10)
FORMAT (' FIND ERROR')
RETURN
END

SUBROUTINE ERROR
THIS WRITES THE STATUS, ERROR CODE, AND BYTE COUNT
COMMON /IBGLOB/ IBSTA, IBERR, IBCNT
WRITE (*,10) IBSTA, IBERR, IBCNT
FORMAT (' ERROR' ,16,16,16)
RETURN
END

SUBROUTINE CHKSTATUS
THIS SUBROUTINE CHECKS IBSTA AND WRITES IT TO THE SCREEN. IF AN

ERRROR IS FOUND IBSTA, IBERR, AND IBCNT ARE WRITTEN TO THE

SCREEN.

WRITE (*,10) IBSTA
FORMAT ('0',' IBSTA IS ',16)

IF (IBSTA .LT. 0) CALL ERROR
RETURN
END

SUBROUTINE FUNCMU
THIS IS THE SPECIAL FUNCTION MENU DRIVER *****

- - - SOME DECLARATIONS . .

.

CHARACTER*! SELECT

CALL CLEAR
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

(*,10)
(*,20)

(*,30)
(*,40)
(*,50)
(*,60)
(*,65)

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

0'

0'

0'

0'

0'

0'

('0'

'*** SPECIAL FUNCTION MENU ***')
'1 BODE PLOT')

'2 BLANK')

'3 BLANK')
'RET RETURN TO MAIN MENU')

'X EXIT PROGRAM')

9X, 'ENTER YOUR SELECTION.
'

)

73

www.manaraa.com

c

READ (*,70) SELECT

70 FORMAT (1A1)

IF (SELECT .EQ. '1') THEN
CALL BODE

C ELSEIF (SELECT . EQ .
'2') THEN

C CALL BLANK
C ELSEIF (SELECT . EQ .

'3') THEN

C CALL BLANK
ELSEIF (SELECT .EQ. ' ') THEN

RETURN
ELSEIF (SELECT . EQ . 'X') THEN

STOP
ELSE

WRITE (*,80)

80 FORMAT ('0',' INVALID INPUT, TRY AGAIN')

GOTO 2

END IF
GOTO 2

END
C

C

SUBROUTINE BODE
C***** THIS IS THE BODE PLOT DRIVER *****

COMMON /IBGLOB/ IBSTA, IBERR, IBCNT
CHARACTER*12 RDDAT(400)
INTEGER DVM, COUNT (400) .LENGTH
CHARACTER*16 FMT
CHARACTER*14 FLNAME

C

CHARACTER*8 INPUTA , INPUTB
CHARACTERS FREQ (10) , TEMP (8) , INPUTC , ACV (3

)

INTEGER I
)
J,K,L,STEPS,WRT(512) ,TEMPA

REAL STARTF, STEPF, VALUE, Y(400) , LASTF , VOLTIN, VIN, DB(400) ,VOUT

1=1

FREQ(l) = 'F'

FREQ(IO) = 'I'

CALL CLEAR
WRITE (*,10)

10 FORMAT CO', 'BODE PLOT DATA GENERATOR')
WRITE (*,20)

20 FORMAT (' ',' ENTER STARTING FREQUENCY AS XXX. XEX (. 01Hz - 12MHz)
'

)

READ (*,30) INPUTA
30 FORMAT (1A8)

WRITE (*,40)
40 FORMAT (' ',' ENTER STOPPING FREQUENCY AS XXX. XEX (. 01Hz - 12MHz)

'

)

READ (*,30) INPUTB

74

www.manaraa.com

WRITE (*,50)
50 FORMAT (' ',' ENTER NUMBER OF DATA POINTS TO TAKE (1-400)')

READ (*,51) STEPS
51 FORMAT (113)

WRITE (*,52)
52 FORMAT (' ',' ENTER PEAK AMPLITUDE OF INPUT SIGNAL AS X.XX')

READ (*,53) VOLTIN
53 FORMAT (1F10.3)

VIN = .707 * VOLTIN
C

WRITE (*,55)
55 FORMAT (' ',' EXECUTING ...'

)

READ (INPUTA.65) STARTF
65 FORMAT (BNF8.0)

READ (INPUTB.65) LASTF
STEPF = (LASTF- STARTF) /STEPS

C

READ (INPUTA.80) TEMP
80 FORMAT (8Al)

C

DVM = IBFIND ('DMM ')

C

ACV(l)- 'A'

ACV(2)= 'C'

ACV(3)= 'V
C

CALL STRING (ACV,3,WRT)
CALL IBWRT (DVM,WRT,3)

C

CALL IBRD (DVM,RDDAT(I) ,12)

DO 70 1=1 .STEPS
DO 90 J-1,8

FREQ(J+1)=TEMP(J)
90 CONTINUE

DVM = IBFIND ('SIGGEN ')

CALL STRING (FREQ, 10 , WRT)

CALL IBWRT (DVM, WRT, 10)

Y(I) = STARTF
C

DVM = IBFIND ('DMM '

)

CALL IBRD (DVM.RDDAT(I) ,12)

COUNT(I) = IBCNT
C

STARTF = STARTF + STEPF
VALUE = STARTF
DO 120 K=l,8

TEMPA = INT(STARTF/(10**(8-K)))
TEMP(K) = CHAR (TEMPA + 48)

STARTF = STARTF - (TEMPA*10**(8-K)

)

120 CONTINUE
STARTF = VALUE

75

www.manaraa.com

70 CONTINUE
CALL CLEAR
WRITE (*,71)

71 FORMAT ('0',' ENTER NAME OF FILE YOU WANT DATA STORED IN,')

WRITE (*,72)

72 FORMAT (' '
, 'USE A DOS NAME AS <c : xxxxxxx. yyy>'

)

READ (*,73) FLNAME
73 FORMAT (1A14)

OPEN (1 , FILE=FLNAME , STATUS= ' NEW
'

, FORM= ' FORMATTED '

)

DO 300 1=1 .STEPS
LENGTH = COUNT(I)-3
IF (LENGTH . EQ . 9) FMT = ' (F10 . 2 ,",", 1A9)

IF (LENGTH . EQ . 8) FMT = ' (F10 . 2 ,",", 1A8)

IF (LENGTH . EQ . 7) FMT = ' (F10 . 2 ,",", 1A7)

IF (LENGTH .EQ. 6) FMT = ' (F10 . 2 ,",", 1A6)

IF (LENGTH . EQ . 5) FMT = ' (F10 . 2 ,",", 1A5)

IF (LENGTH .EQ. 4) FMT = ' (F10 . 2 ,",", 1A4)

IF (LENGTH . LE . 3) FMT = ' (F10 . 2 ,
",", 1A3)

WRITE (l.FMT) Y(I) ,RDDAT(I)

300 CONTINUE
REWIND 1

DO 400 1=1, STEPS
READ (1,410) VOUT

410 FORMAT (11X.BNE9.3)
DB(I) = 20 * LOG10(VOUT/VIN)

400 CONTINUE
REWIND 1

DO 420 1=1 .STEPS
WRITE (1,430) Y(I) ,DB(I)

430 FORMAT (F10 . 2
,

'

,

'
, E12 . 5)

420 CONTINUE
CLOSE (1)

WRITE (*,500) FLNAME
500 FORMAT ('0',1A16,' NOW CONTAINS YOUR BODE PLOT DATA.')

WRITE (*,501)
501 FORMAT (' ',' COLUMN 1 IS THE FREQUENCY DATA, COLUMN 2 IS THE')

WRITE (*,502)
502 FORMAT (' ','GAIN IN DECIBELS. THE INPUT VOLTAGE IS ASSUMED')

WRITE (*,503)
503 FORMAT (' '

,

' TO BE CONSTANT OVER THE FREQUENCIES SWEPT.')
RETURN
END

76

www.manaraa.com

LIST OF REFERENCES

1. Taylor, T. , Use of the GPIB for Data Collection and Display , M.S.
Thesis, Naval Postgraduate School, Monterey, California, June 1985.

2. Beasley, H. A. Electronic Circuit Testing Via the GPIB , M.S. Thesis,
Naval Postgraduate School, Monterey, California, December 1985.

3. National Instruments, GPIB-PC User Manual , Austin, Texas, 1984.

4. Etter, D. M. , Structured FORTRAN 77 For Engineers and Scientists , The
Benj amin/Cummings Publishing Company, Inc., Menlo Park, California, 1983

77

www.manaraa.com

BIBLIOGRAPHY

Advanced Graphics Software, Inc., SlideWrite Plus , Sunnyvale, Califor-
nia, 1986.

Fairley, Richard, Software Engineering Concepts , McGraw-Hill, Inc.,

1985.

International Business Machines Corp., Disk Operating Svstem Version
3.10 . Boca Raton, Florida, 1985.

Kreitzberg, Charles B. and Shneiderman, Ben, FORTRAN Programming: A
Spiral Approach . Harcourt Brace Jovanovich, Inc., New York, New York,

1982.

Microsoft Corporation, Microsoft FORTRAN Compiler , Redmond, Washington,
1984

www.manaraa.com

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93943-5002

Chairman, Code 62 2

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

Professor J. P. Powers, Code 62Po 2

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

Professor S. Michael, Code 62Mi 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

Commandant (G-PTE) 2

U.S. Coast Guard Headquarters
2100 2nd Street SW
Washington, DC 20593

Lieutenant George H. Self Jr. , USCG 2

Commandant (G-NRN)
U.S. Coast Guard Headquarters
2100 2nd Street SW
Washington DC 20593

79

www.manaraa.com

S7
16070

r

www.manaraa.com

www.manaraa.com

www.manaraa.com

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 9§94§-§99S

Thesis
q&1255 Self

7

1

implementation of an

IBM-PC/AT as a GP1B con-

troller.
37465

1

27 .

27 DCC 90
3 7 i* 6 5

_
221165

Thesis

S41255
c.l

Self
Implementation of an

IBM-PC /AT as a GP1B con-

troller.

www.manaraa.com

